1β,7β-DIHYDROXYHECOGENIN, A SPIROSTANE PRODUCED FROM HECOGENIN BY CUNNINGHAMELLA ELEGANS

JAFFER A JAFFER, GERALD BLUNDEN and TREVOR A CRABB*

School of Pharmacy and *Department of Chemistry, Portsmouth Polytechnic, King Henry I Street, Portsmouth PO1 2DZ, UK

(Received 26 April 1982)

Key Word Index—Cunninghamella elegans, Phycomycetes, Mucorales, spirostanes, 1β , 7β -dihydroxyhecogenin, hecogenin

Abstract—The major transformation product produced by incubation of hecogenin with *Cunninghamella elegans* is (25R)- 1β , 3β , 7β -trihydroxy- 5α -spirostan-12-one $(1\beta$, 7β -dihydroxyhecogenin)

INTRODUCTION

Cunninghamella elegans has been shown to effect a wide range of hydroxylations of steroidal compounds [1-3] However, incubation of steroidal sapogenins with this fungus has received little attention and only few studies have been carried out on microbiological transformations of these compounds [4, 5]

RESULTS AND DISCUSSION

Compound A, $C_{27}H_{42}O_6$, (M⁺ at m/z 462 298, calcu-462 298), mp (uncorr) 223-225°, $[\alpha]_D^{20}$ $+20.84^{\circ}$ (MeOH, c0.15) was the major product obtained after incubation of (25R)-3 β -hydroxy-5 α -spirostan-12with Cunninghamella (hecogenin) Absorptions were observed in the IR spectrum of compound A at 3440 (hydroxyl), 1694 (carbonyl), and 976, 919, 902 and 862 cm⁻¹ (spiroketal), with the absorption at 902 cm⁻¹ being of greater intensity than that at 919 cm⁻¹ (25R-spirostane) [6] The mass spectrum revealed that the compound was a trihydroxy keto spirostane with the mode of fragmentation being similar to that of hecogenin The base peak at m/z 139 and the intense fragment at m/z126 confirmed that hydroxy groups were absent from ring F [7] Major fragments at m/z 390 and 348, and the absence of prominent ions at m/z 168 and 153 localized the hydroxy and carbonyl groups to rings A-C [8] The major fragment at m/z 273 in the mass spectrum of hecogenin, formed partly by the expulsion of carbon monoxide from ring C, with the protons of C-11 retained, was present at m/z 305 in the mass spectrum of compound A [7]

Two of the three hydroxy groups of compound A were readily located at C-1 and C-3 from the ¹H NMR spectrum (270 MHz TMS int standard) The C-3 hydroxy group present in hecogenin was shown to be unmodified in compound A from the resonance at δ 3 59 (CDCl₃, 1H, m, $W_{1/2} \simeq 25$ Hz, H-3 α), and one of the introduced hydroxy groups can be assigned to the C-1 β position by the presence of a doublet of doublets at δ 3 66

 $(C_5 D_5 N, 1H, J_{1\alpha 2\beta} \simeq 115 Hz \text{ and } J_{1\alpha 2\alpha} \simeq 44 Hz,$ H-1α) The second introduced hydroxy group gave rise to a multiplet overlapping with the downfield C-26α proton signals at δ 3 31 In the ¹H NMR spectrum of compound A triacetate (M⁺ at m/z 588), mp 270-271°, the signal for the proton associated with the second introduced hydroxy group was seen as a multiplet at $\delta 463$ (C₅D₅N, 1H, $W_{1/2} \simeq 26 \,\mathrm{Hz}$, H-7 α), indicating equatorial substitution This observation together with the C-18 and C-19 methyl signals of both compound A (δ 1 06 and 0 95) and its triacctate (δ 1 05 and 1 10) are consistent also with either 6α or 7β hydroxylation [9, 10] A clear distinction between the two possible 6α and 7β hydroxylation sites was obtained from the 13C NMR spectrum of compound A (CDCl₃, 22 54 MHz), in particular when values for C-5, C-8 and C-19 were compared (Table 1) From these data the second introduced hydroxy group was readily assignable to the 7β -position and thus compound A is (25R)- $1\beta, 3\beta, 7\beta$ -trihydroxy- 5α -spirostan-12-one

EXPERIMENTAL

Hecogenin (0.25 mg/ml) was incubated for 9 days with Cunninghamella elegans Ledner (CBS 167.53) using the liquid nutrient and general microbial procedure described by Crabb et al [13] The mixture was filtered and the filtrate satd with NaCl before being extracted with CH_2Cl_2 The extract was treated with Na_2SO_4 , evaporated to dryness and the residue dissolved in a small vol of $CHCl_3$ On standing a white solid (compound A) was obtained floating on the surface, which was removed by filtration

Acknowledgements—We thank Mr C Turner and the SERC for the ¹H and ¹³C NMR spectra, respectively We are grateful to Miss B Smith for technical assistance

REFERENCES

1 Crabb, T A, Dawson, P J and Williams, R O (1980) J Chem Soc Perkin Trans 1, 2535 Short Reports 305

Table 1 ¹³C NMR spectral data of hecogenin and 1β,7β-dihydroxyhecogenin*

Carbon No	Hecogenin [11]	1β,7β-Dihydroxy- hecogenin	1β,7β-Dihydroxy- hecogenin (calculated values) [11, 12]	1β,6α-Dihydroxy- hecogenin (calculated values) [11, 12]
1	36 5	76 2†	764	766
2	31 2	42 4	42 1	418
3	70 7	67 6	68 2	67 8
4	37 8	37 5	368	309
5	44 6	39 4	40 8	50 5
6	28 3	37 8	37 5	68 8
7	31 4	73 4	74 3	408
8	34.4	42 7	42 7	33 4
9	55 5	53 5	54 0	55 1
10	360	41 2	41 6	42 8
11	37 8	40 5	41 4	41 3
12	2130	213 7†	213 2	213 0
13	55 0	55 2	55 4	54 4
14	55 8	54 5	54 9	55 3
15	31 5	34.4	34 6	318
16	79 1	79 4	79 4	78 9
17	53 5	52 7	52 3	53 3
18	160	16 2	158	157
19	120	66	6.5	7.5
20	42 2	42 4	42 2	42 2
21	132	13 3	13 2	13 2
22	109 0	109 3	109 0	1090
23	31 2	31 4	31 2	31 2
24	28 8	28 8	28 8	28 8
25	30 2	30 2	30 2	30 2
26	66 8	67 0	66 8	66 8
27	171	171	17 1	171

^{*} Values given in δ -values (ppm)

- 2 Crabb, T A, Saul, J A and Williams, R O (1981) J Chem Soc Perkin Trans 1, 1041
- 3 Crabb, T A, Dawson, P J and Williams, R O (1982) J Chem Soc Perkin Trans 1, 571
- 4 Smith, L L (1974) in Terpenoids and Steroids Specialist Periodical Reports, (Overton, K H, ed) Vol 4, p 394 The Chemical Society, London
- 5 Howe, R, Moore, R H, Rao, B S and Gibson, D J (1973) J Chem Soc Perkin Trans 1, 1940
- 6 Wall, M E, Eddy, C R, McClennan, M L and Klump, M E (1952) Analyt Chem 24, 1337
- 7 Faul, W H and Djerassi, C (1970) Org Mass Spectrom 3, 1187

- 8 Budzikiewicz, H, Takeda, K and Schreiber, K (1970) Monatsh Chem 101, 1013
- 9 Tori, K and Aono, K (1964) Annu Rep Shionogi Res Lab
- Bridgeman, J E, Cherry, P S, Clegg, A S, Evans, J M, Jones, Sir E R H, Kasal, A, Kumar, V, Meakins, G D, Morisawa, Y, Richards, E E and Woodgate, P D (1970) J Chem Soc C 250
- 11 Eggert, H and Djerassi, C (1975) Tetrahedron Letters 3635
- 12 Blunt, J W and Stothers, J B (1977) Org Magn Reson 9, 439
- 13 Crabb, T A, Saul, J A and Williams, R O (1977) J Chem Soc Perkin Trans 1, 2599

[†] Value obtained from solution in Me₂CO